European Federation of Museum & Tourist Railways

Fédération Européenne des Chemins de Fer Touristiques et Historiques
Europäische Föderation der Museums- und Touristikbahnen

International Heritage Railway Conference

Llandudno, Wales, United Kingdom
28th-29th March 2003

Conference Proceedings

© FEDECRAIL, 2003
Manos Vougioukas
1 - European Union Co-Funding Opportunities for Actions Involving Heritage Railways 1-1

Shaun McMahon
2 - The Practical Application of “Porta Treatment” – an Advanced Internal Boiler Water Treatment System – On Steam Locomotives of the Ferrocarril Austral Fueguino, Republic Argentina 2-1

Richard Gibbon
3 - A Methodical Approach to Assessing the Significance of Railway Artefacts 3-1

David T. Morgan
4 - The Riga Charter – A Proposal for a European Charter for the Conservation and Restoration of Heritage Railways in Operation ... 4-1
1 - European Union Co-Funding Opportunities for Actions Involving Heritage Railways

Manos Vougioukas
A Transport Planner and Analyst, Consultant in Transport, Tourism, Development and Management. He is also Member of the Board of the new operating company of Volos-Milies Pelion Railway in Greece. He directed the preparation of the Exploitation Plan of the Pelion Heritage Railway as part of the EU ECOSERT Project in the Recite II Programme on planning for Sustainable Tourism. He is the Founder of the Pelion Railway Preservation Society.

1. Introduction

There are several sources of funding directly from European Union (EU) institutions, funds and programmes that can benefit Small and Medium Enterprises (SMEs), Local Government Authorities, Non-Governmental Organisations (NGOs), Universities, Research and Training Centres. At the same time, heritage railways in most cases are in need of extra funding in order to support their initiatives of further restoration work, development, promotion, marketing, etc, in some cases to supplement other available funding from national sources. This paper will explore ways and opportunities for obtaining financial support directly from EU sources.

2. European Union Co-Funding Instruments

It is more accurate to use the term EU co-funding, as in almost all cases a proportion of the cost of the action is actually funded by the EU with the rest coming from own contribution of the beneficiaries or from other sources (eg national government). The proportion of EU funding can vary from 35% to 75% (in some exceptional cases even higher) of the costs of the action. The vast majority of funding comes through the European Commission (EC), the Structural Funds it operates and other programmes run by its Directorates-General (DGs).

The sources of EC co-funding are several, each with its own actions, budget, rules, priorities, timescales, expected deliverables and terminology. The following is a good but not exhaustive list of sources from the European Commission:

- European Regional Development Fund (ERDF)
- Cohesion Fund (and ISPA for the Accession Countries)
- Research and Technological Development (RTD) Framework Programmes
- “Grants” from specific programmes (eg from Culture, Energy, Environment, Enterprise DGs)
- Other specific instruments.

Apart from the EC, the European Investment Bank (the development bank of the EU) provides loans on favourable terms for infrastructure projects.

The other EU institutions, European Parliament (EP), Council of Ministers, Committee of the Regions (CoR), do not generally have funding mechanisms of this kind on their own. Almost all the funds and programmes that they approve are channelled through the EC budget.

It should be noted that some of the major funding from the EC is earmarked and administered by the Members States at national government level. Such major funding includes the Community Support Frameworks (CSF) which although approved by the EC and the EP their spend is allocated by national governments. Heritage railways have benefited from such support through national government spending.
which involves EU support. Such funding does not involve any direct links of the beneficiary and the EU institutions and therefore are excluded from this paper.

3. CONCEPTS AND PROCEDURES

To benefit from EU co-funding for a project, there are some general concepts and procedures that should be followed such as:

- Networks of organisations from several countries (ranging from 2 to 5 or more) are usually required
- Co-operation at all levels is a must
- Exchange of experiences and good practices is very helpful
- The project must involve or lead to common methods of working for all participants
- Dissemination of results to wider public or particular community at large (depending on the action) is very important
- Workshops, Seminars and Conferences are almost always required
- Deliverables must be concrete and well-specified
- Added-value at trans-European and Pan-European levels is sought.

The majority of potential funding for heritage railways comes from the big funding instruments such ERDF and the RTD Framework programmes. The majority of ERDF spending is allocated through the CSF or similar actions, but there is always an inter-regional co-operation part (Article 10 of ERDF) with substantial funding of interest to heritage railways under tourism, regional development, culture, environment and employment themes. The inter-regional co-operation programmes have been Recite (Regions and Cities of Europe) and Recite II, ECOS-Ouverture (for external co-operation with Central and Eastern European Countries) and MEDA (for co-operation with Mediterranean countries). The current inter-regional co-operation programme is INTERREG IIIC. Tourism and culture are included as eligible topics in INTERREG IIIC.

RTD projects tend to be more scientific and technological and usually addressed to Universities and research institutes. However, there may be more emphasis on tourism and sustainable development, or transport and tourism, in the 6th Framework programme just starting (first call of proposals ends in April 2003) in which some innovative actions involving heritage railways can be proposed.

The process of award of a contract by the EC starts with a call for proposals that is published in the Official Journal (OJ) of the European Communities and all documents are usually available on the Internet. The proposals are evaluated by an independent group of experts and if there is a recommendation for funding, the EC responsible DG opens negotiations with the selected consortium coordinator. During this stage the EC may request some clarifications on or changes to the work programme and budget. When agreement is reached a contract is signed and the project starts. The process from call of proposals to the project start can take between 9 months minimum and as long as 18 months; usually it takes about a year.

4. MANAGEMENT AND CO-ORDINATION

The project management and co-ordination requirements of a EU co-funded project are usually very demanding and should not be underestimated. As this kind of EU co-funded project may involve several organisations in several countries operating in different languages, legal frameworks and cultural environments, it is obvious that there is a need for professional project management approach and continuous monitoring.

Under Project Management we mean:

- Administration (day-to-day)
- Technical Co-ordination, and
• Financial Management.

Administrative practices should be sound and effective in order to process and document the large volume of inter-partnership communications and exchanges of drafts, materials, products, outputs and deliverables related to the project. In addition there is a need for efficient communication with the Commission services and possibly other EU institutions that may be involved. The partners will need to have regular progress meetings (typically 3 times per year) and these should be well organised with a proper Agenda set by the project manager in consultation with the main partners, properly chaired and minuted with on-going monitoring and assessment of progress achieved.

Technical Co-ordination is also important in order to monitor the proper implementation of the agreed work programme (which is usually an annex to the contract with the Commission). Given that different teams will be working in parallel in several locations at the same time and in different languages, it is important to monitor and follow-up regularly the technical progress, assess the results and where appropriate take remedial action. It is important to ensure that intermediate and final deadlines are met and that no time is wasted through lack of co-ordination.

Financial Management is of the utmost importance, as the Commission services and the Court of Auditors have the right to audit all the expenditure for several years following the end of the project. The rules of the particular programme have to be followed by all partners and the co-ordinator should keep copies of all supporting documentation. In most cases there is a need for external audits being performed prior to some intermediate and the final payments being released by the Commission.

Setting-up a Management Board and a Steering Committee to oversee it, the former comprising managers and the latter Presidents/Chief Executives or elected councillors if a local government project, is a good way to ensure good project management and co-ordination.

A good practice, sometimes a necessity, is the signing of a Consortium or Partnership Agreement by all participants. This Agreement governs all internal management and co-ordination issues and responsibilities of the consortium members that are not the subject of the main contract with the Commission. In cases where the contract is signed only by the co-ordinator (and not by all main partners), the consortium agreement serves also a vehicle of sharing risks and responsibilities between the project partners.

5. DISSEMINATION, QUALITY CONTROL AND EVALUATION

Apart for project management and co-ordination there are usually three other tasks that have to be addressed:

- Dissemination
- Quality control
- Evaluation.

Dissemination of the project findings, results and outputs is very important and is increasingly a main requirement by the EC. The aim of dissemination is that the project results receive maximum exposure so that other organisations can benefit from them. Dissemination channels include continuously updated websites, leaflets and brochures, dedicated dissemination events such as seminars, workshops and conferences as well as participation in established conferences and exhibitions and articles in existing publications.

Quality control concerns the standard of the deliverables (reports, multi-media, on-the-ground actions, infrastructure, etc) that are defined and foreseen as outputs of the project. This task can be carried out by experts assigned by the project co-ordinator on behalf of the consortium, so that the final product is of the highest quality possible. For written reports, this usually involves peer review and comments/recommendations for improvement (particularly as the inputs come from several countries and working languages).
Evaluation involves ex-ante, intermediate and final ex-post stages, as well as continuous monitoring of the progress and results achieved by experts, usually “external” to the day-to-day work of the project. The aim of the evaluation is to provide an external viewpoint on the progress and results achieved and to recommend remedial measures for better management, co-ordination and quality of the outputs.

6. SOME EXAMPLES AND POTENTIAL PROJECTS

There are some examples of actions involving our **Pelion Heritage Railway** in EU co-funded projects, such as:

The **SMART** project (Strategic Management Actions Related to Tourism) was co-funded by the Action Programme on Tourism between 1995 and 1997 led by the University of Thessaly in Greece and involving tourism research centres in Italy and Spain. SMART had a wider aim to improve the management of tourism utilising nature and culture in order to promote sustainable local development through pilot actions. One of these actions involved the planning and implementation of excursions using alternative forms of transport to the private car (this was a requirement of the programme). For this, SMART developed itineraries involving the steam little train of Pelion (between Ano Lithonia and Milies) and tested these by organising excursions for particular groups. The results were positive so that these organised excursions were taken up by tour operators and were included in tourist packages, which were offered commercially.

The **ECOSERT** project in the **Recite II** inter-regional co-operation programme involved planning for sustainable tourism with environmental management and several local actions, led by the Prefecture of Magnesia with partners in the UK, Italy and Spain (1998-2002). One of these actions was the preparation of an Exploitation Plan for the Volos-Milies Heritage Railway in Mount Pelion (for the total length of the 28 km line out of which 15 km are currently in operation). The exploitation plan team reviewed international experience of heritage railways, recorded the present status of the line and rolling stock, carried out market research with visitors and tour operators, proposed new schedules and tourist products, defined the pricing policy and the marketing-promotion strategy, proposed the reservation system and the uses for the station buildings, and identified the further work required for the next 5 years. It also carried out a technical and economic feasibility study for the new operating company and examined the legal issues involved in reaching a concession agreement with the Hellenic Railways Organisation (OSE), the owner of the railway. As part of the plan, the new operating company was set up in 2002 as a public-private partnership, including local government authorities of the area and private sector organisations. A Preservation Society has also been established as a non-profit company to support the operating company with specialised railway expertise, organising voluntary work, international relations and cultural activities.

Following contacts with **FEDECRAIL** members, we have taken the initiative to set-up a project in the **EU Culture 2000** programme under the theme of Industrial Heritage (a so called Multi-Annual Co-operation Agreement). The emphasis of the EC in the call for proposals for 2003 was on cultural heritage in the sector of **industrial heritage with strong European significance**. Heritage railways of course are of the highest European significance regarding industrial heritage. Together with partners from UK, Spain, France, Netherlands and Latvia, we prepared the **SteamRail.Net** (Industrial Heritage of Steam Railways – Co-operation Network) proposal, which was evaluated by independent experts with a recommendation for funding. We have been invited to explain the proposal in Brussels during February 2003 and we are currently awaiting the approval by the European Parliament for the project to start in June 2003. **SteamRail.Net** will last for 3 years and involves the restoration of steam locomotives (most of which are declared as “monuments”) of various gauges, documentation of the restoration processes, exchange of information and experiences (mainly through FEDECRAIL channels), co-production and staging of touring exhibitions using new technologies concerning the restoration processes and results, production of multi-media and audio-visual products in several languages and promoting the links of the participating railways with the culture, history and environment of their wider areas. As part of SteamRail.Net we hope to host the 2006 FEDECRAIL conference in Greece and to make important
contributions on the intermediate results of the project in the 2004 and 2005 conferences. The touring exhibitions will be staged in all participating countries as part of established tourism and railway sector exhibitions, as well as at events involving schools and youth.

Under the INTERREG IIIC programme that just started (first call for proposals was closed in January 2003), there is potential for a proposal led by local government authorities on sustainable tourism development involving historic modes of transport, including heritage railways and other disused or converted facilities such as canals, boat building and repair yards, footpaths. Heritage railways may be part of local partnerships working together with the respective local authorities.

Under the RTD 6th Framework, there may be actions involving transport, tourism and sustainable development in which research and demonstration actions involving heritage railways can also play a part in co-operation with Universities and Research Institutes.

Finally, the European Parliament recommended in 2002 the establishment of a specific Community-wide framework programme for tourism with a specific budget and emphasis on the projected measures, especially those related to training or intended to promote innovation. This programme is seen as a means of enabling Europe as a whole to remain the world’s top tourist destination. If such specific programme on tourism is adopted, museum and tourist railways could be active participants towards strengthening European tourism potential.

7. CONCLUSIONS

We have presented some instruments, concepts and ideas of EU co-funding opportunities for actions that involve development of heritage railways and their wider areas. This is not an exhaustive review, as EU programmes and priorities range widely and may also change over time. Some guidelines and conclusions can be drawn, that if taken into consideration may lead to securing EU co-funding for actions involving European heritage railways, viz:

- Work with Local and Regional Government Authorities
- Work with Universities, Research and Training Institutes
- Work with Travel and Tourist Industry Associations, Chambers of Commerce and Industry, Business Associations
- Interpret the Calls for Proposals in the widest sense possible so that to include heritage railways and also in relation to your own plans
- Take advantage of Calls for Proposals that may have a heritage railway interest, as they are announced (a priority theme of this year that suits heritage railways may not re-appear again next year)
- Do not underestimate the importance and extent of sound project management, administration and co-ordination
- Use existing or secured funding as matching funds by including actions that are already in the pipeline
- Emphasise the European added-value of common working methods
- Include effective dissemination activities and channels (making best use of existing communication channels and developing new ones)
- Emphasise the common European heritage of steam railways
- Stress the multiplier effect
- Include partners from Accession Countries (soon to become new EU member states)
- Seek advice from and inform your national representatives in the relevant programmes on your proposal
- Start the proposal early and use established links with relevant organisations in other countries to speed up the proposal preparation
- Observe deadlines in the submission of proposals and deliverables
- Use professional advisers throughout – to win the project and to run it
• Involve FEDECRAIL, as well as national associations, as actors and key users of the project results.

Even in cases where a heritage railway company cannot benefit directly from EU co-funding, actions involving heritage railways can be co-funded through EU programmes where the actual beneficiary is another organisation (eg Local Authority, University/Research Institute, Tourism Development Agency, Chamber of Commerce).

We hope that, the above can contribute towards heritage railways benefiting from EU co-funding programmes in the future, but we strongly believe that the experiences shared by working together at trans-European and pan-European levels in such programmes, as well as the teamwork achievements, are worth far more than the funding itself.
2 - The Practical Application of “Porta Treatment” – an Advanced Internal Boiler Water Treatment System – On Steam Locomotives of the Ferrocarril Austral Fueguino, Republic Argentina

Shaun McMahon
E-mail: engineer@arnet.com.ar
Website: www.trendelfindelmundo.com.ar

Note: This paper contains matter subject to intellectual property, all rights reserved.

1. BRIEF DESCRIPTION OF STEAM LOCOMOTIVE BOILER WATER TREATMENT

A continuing problem since the development of the first steam locomotive has been treatment of the boiler water. Water contains impurities (minerals, metals etc.) which can lead to problems in steam boilers. Since the vast majority of locomotives built are non-condensing (i.e. water is used once and exhausted out of the chimney, we will not discuss the cases for and against condensing locomotives in this paper) water treatment is more difficult to control than on ships and stationary power plants which condense their water and reuse it. In a steam locomotive, the impurities become concentrated inside the boiler over a period of time and eventually precipitate out of the solution onto the internal surfaces of the boiler. This process is called fouling. These materials can slow down the transfer of heat from the fuel to the water and decrease the locomotives efficiency and power. Such fouling can also accelerate corrosion of the boilers internal surfaces, thus increasing maintenance requirements and decreasing the life of boiler components. Some water conditions cause boilers to 'foam', which in turn can lead to many other problems. Operators in the past attempted to minimize foaming by periodically 'blowing down' the boiler or removing small amounts of water from the low points of the boiler while the boiler was in steam (for example the scum cocks as used on South African locomotives). If this had to be done very often a great deal of fuel and water could be wasted. Certain geographical areas have much worse water than others do, therefore whilst this phenomena was a nuisance for all railways, it became a tremendous problem for some.

Normal practice on steam locomotives was to 'wash out' the boiler at least monthly. The locomotive would be taken out of service, have its fire extinguished and the boiler left to cool down (cooling down of the boiler was not North American practice, more of that later). Boiler plugs were then removed and washing out of the boiler internals could begin. This consisted of directing a high-pressure jet of water through the spaces provided by the absence of the boiler plugs and followed a systematic course. Undesirable matter is flushed out during this operation. Once flushing out was complete the plugs could be refitted. This process could take several hours, not to mention the time taken to gently re warm the boiler from cold (again not US practice) before proper steam raising could begin followed by a visual check prior to the locomotive re entering service. All of this represented a significant amount of labour accompanied by lack of availability of the locomotive. A more serious problem was that some fouling materials hardened onto boiler surfaces and could not be removed by using normal washout methods. If fouling becomes sufficiently severe, it can actually cause the temperature of parts of the boiler such as firebox surfaces and tubes to become so great that they can be permanently damaged (a practical example of this is given later).
The whole water issue was another 'nail in the coffin' of the steam locomotive at a time when the diesel locomotive was being introduced. However, the application of sound engineering principals has shown that problems associated with boiler water can be virtually eliminated from steam locomotive operation.

By the 1930's railway suppliers had begun to develop chemical treatment which somewhat reduced these problems. By adding appropriate chemicals to the water prior to its introduction to the boiler, fouling could be significantly reduced. Some railways were more advanced than others in their methods of water treatment. In France an advanced treatment was developed known as TRAITEMENT INTEGRAL ARMAND (TIA) which SIGNIFICANTLY reduced problems concerning locomotive boilers. The Argentinian engineer L.D. Porta went on to develop a simplified, heavy duty version of the TIA system and applied it to a number of locomotives in Argentina. Advances in the system allowed locomotives to operate for 6 months or more, even in what were known as 'bad water' districts, between boiler washouts. In addition, hard fouling of internal boiler surfaces was completely eliminated. This state of affairs significantly extended boiler life. Some locomotives using Portas treatment system operated for some 30 years without replacement of tubes or firebox plates.

2. APPLICATION OF A MODERN BOILER WATER TREATMENT AT FERROCARRIL AUSTRAL FUEGUINO

The concept of internal boiler water treatment has for a long time been as misunderstood a subject as locomotive exhaust systems with many myths and old drivers' tales being allowed to take over from proper investigation and rigid implementation of corrective systems. Such systems are derived from proper scientific testing with railway engineers working in conjunction with both high academics, running shed staff and locomotive crews. It may be said that over the years too many locomotive engineers did not place their faith in the high academics and by the same token neither did they go out on the engines often enough to gain practical experience as firemen and drivers (the exception to this being in France as I am sure that you aware of). As a result too much 'progress' was achieved in trial and error' fashion, stabbing punches in the dark and without being aware of the practical implementations of instructions.

The Ferrocarril Austral Fueguino (FCAF), translated to English - Southern Fuegian Railway, was a classic case of a former 'working' railway (this is far from saying that the FCAF does not work for its living nowadays!) being re opened as a commercial tourist line in a country where the railway tradition had almost been lost1. Following a traffic boom that took place during 1996 and 1997 a technical review of FCAF was undertaken during 19982. As a result of this review, it was decided by senior management to go ahead with a locomotive modernization scheme. One very important aspect of any such scheme is that of corrective INTERNAL boiler water treatment. Indeed, it is unimaginable to visualize advancing steam without the correct internal boiler water conditions. One could say that FCAF provides one of the hardest testing grounds for railway engineering systems - a line that operates all the year round with an intensive high season service with minimum resources, minimum number of relatively low tech staff, geographically unfriendly location3, operates a winter service in temperatures as low as minus 25 degrees centigrade in severe snow drift conditions in a country that saw the breakdown of most national systems during the financial crash of 2001. Sounds grim I suppose? However that is the reality of this narrow gauge railway, it is a 'no frills' operation allowing a minimum margin for error.

A corrective boiler water treatment regime was implemented on the railway during 1998 as a result of the L.D. Porta's first critical review of the locomotive situation that existed at the time4. Unfortunately the application of the system failed completely as supervision of such did not exist thus each driver was allowed to opinionate over whether the treatment was a good thing or a bad thing or indeed whether it was to much effort to remember to dose the locomotives water tanks on a daily basis! The present writer arrived at FCAF in the capacity of full time Technical Manager during early March 1999 and the water treatment regime was re introduced, though this time under rigid supervision5. The short and long term benefits of such a system were explained in detail to FCAF maintenance and operating staff along with senior management and by the end of the year we were beginning to see the benefits of the work. The treatment that was in stock at the time, STOKER 130, dated back to 1998 and it was decided to continue
using the same product rather than changing over to a different chemical. The composition of the treatment in powder form had been specified to the supplier by Porta some years earlier.

In the opening part of this paper I briefly mentioned the TIA system as adopted in France and its simplification as a 'heavy duty' treatment for countries such as Argentina where locomotive drivers were not fully qualified engineers but rose from the ranks of cleaners and firemen. FCAF drivers (locomotives are single manned on this line) are (with the odd exception) 'men off the street' or recruited from other branches of industry. Therefore the application of any new system must be as simple and straightforward as possible. Water tank and tender dispensers are normally used to distribute chemical water treatment into the feedwater. In the case of the FCAF locomotive fleet it proved practical to dose each locomotive by hand on a 'per trip' basis. As well as being relatively easy to dose the feedwater to accurate weighed out measurements it gave the operating staff (in this case the drivers) a good 'hands on' feel to what was being done and we managed to eliminate any imagined magic that may have influenced a premature failure of the system. The chemicals used in this system are supplied in powder form. One very important ingredient of the treatment is polyamide antifoam. More of this later as we take a step by step look at how the system was applied to our locomotive fleet. The initial dosages were calculated as best we could in proportion to the amount of feedwater consumed per round trip. It should be remembered that prior to 1999 no record keeping as far as the engineering department was concerned had taken place and therefore we were beginning afresh with daily consumptions of any kind. Initially a good guesstimate was taken as to how much water both 'Nora' and 'Camila' were using on a round trip and treatment dosages were applied on that basis. Looking back through the records relating to that period of time the instruction issued to footplate staff states a figure of '50 g Stoker 130 per water tank filling'. During the winter of 1999 we undertook the heavy overhaul and first stage modification of 'Camila' at the 'End of the World Workshops' and at the same time water and fuel tank gauges were fitted to the locomotive which made life a lot easier as far as accurate record keeping was concerned when this locomotive re entered service later that year.

By early on in the year 2000 the corrective water treatment system was well under way at the railway with the writer generally supervising dosages and analysing what we had in the boilers as best he could at that point in time. However, the results of not using any boiler water treatment for the previous 4 years came to light when the increased steaming rate of modified locomotive No.3 'Camila' revealed that the foundation ring and parts of the water space between the firebox inner and outer sheets were packed solid with hard scale. This state of affairs led to severe deformation (evident in the form of a white bulge) of the right hand side inner firebox sidesheet which resulted in the locomotive being withdrawn from service on 12th February 2000, not really a good state of affairs as we were still in high summer season and therefore left with 'Nora' and the diesel 'Tierra del Fuego' to deal with the rest of the seasons traffic. Camila was fully stripped down to a rolling chassis with the boiler removed for a thorough visual examination. This involved having to drill several holes in the outer firebox so as to ascertain the extent of the packed up scale. Likewise inspection holes were drilled in the inner firebox so as to determine scaling levels at the point of the deformation itself. What was there had to be broken up before being removed by the bucket full. Once the inspection was complete and repair method determined and verified by our inspecting body the boiler was sent to a boiler shop in Buenos Aires. The other FCAF steamer 'Nora' was also withdrawn from service for a couple of days in order to check the boiler for signs of a similar build up of scale. It was found to be not quite as bad as 'Camila's' but was at the same time well on the way to a failure of a similar nature. The accumulated scale was rapidly broken down into a substance that could be removed by steel rods and high pressure water jets. The original design of 'Nora's' and 'Camila's' boilers did not lend itself to easy inspection, maintenance and cleaning, therefore apart from the lack of a corrective water treatment system this factor had to be taken into account when assessing the particular failure that we were faced with of failure. At the same time as carrying out repair work to 'Camila's' inner firebox, 3 foam height indicator accommodation bosses were fitted between the dome and the safety valves on the top of the boiler barrel. This failure meant that 'Camila' was out of traffic for a period of over 7 months which, in view of the fact that we had spent the best part of 1999 overhauling it, was not really the best state of affairs. Likewise the company was faced with a substantial repair and transportation bill. During that period of time 'Nora' ran in service and application of water treatment continued. A thick brown soup was beginning to form inside the boiler and as the treatment continued to...
do its work we noticed that this was becoming increasingly mobile as the steaming cycle proceeded. Boiler washouts were initially set at 30 days in steam and as such were carried out we saw with our own eyes what had once been hardened scale beginning to break up into soft flakes some 50 mm by 20 mm14. A muddy deposit was also noticeable as we drained the boiler water, flushed out the barrel followed by the foundation ring.

Camila was back in daily service by early October, the boiler was as internally clean as possible following repair and hydraulic testing. Dosing with the requisite amount of Stoker 130 continued. By now the addition of the water tank gauge was showing its benefit and we were at last able to calculate the amount of treatment required per trip15, a good practical indicator being that the feedwater overflow from the injector should run with a tinge of red to it, something similar to a watered down red wine16! One may think at this point in time "this is all well and good, but what about carryover of the boiler water due to a high level of suspended and totally dissolved solids being in violent circulation?" The writer had a fairly harsh experience of this phenomena whilst driving 'Camila' on a busy day not long after the engine had returned to traffic. What the theory book says is one thing but when you are at the front of a heavily loaded passenger train trying to control a locomotive that has an out of control boiler giving a false water indication, passing such through the steam circuit to atmosphere and not being able to put the injectors on represents a different case altogether. The system is designed to work by maintaining a high level of alkalinity within the boiler. The mobile sludge had accumulated very quickly at this stage of development and the scheme was more advanced than I had thought it to be, I had been caught out because the level of alkalinity as a proportion of totally dissolved solids was to low - far to low! At the time we recorded a pH number of 9,5, this was raised relatively quickly in order to give a pH number of 11 and the problem ceased. On the day in question much blowing down of the boiler had to be carried out in order for 'Camila' to continue working its trains and application was suspended for a couple of days whilst the problem was thoroughly investigated. In this particular case (which was relatively early on in the timescale of the project) blowing down was carried out in order to apply a temporary re balance to the internal boiler water conditions, if re application of the treatment causes a further imbalance of these conditions then a full washout must be carried out before a new steaming cycle is started. This problem was only to reappear twice in the future when we were supplied with a poorly made up batch of the treatment, in these isolated cases foaming17 occurred after only 14 days into the steaming cycle. As concentration levels in the boiler rose additional (and very powerful) polyamide antifoam was added to the treatment applications. Though this antifoam is supplied with the Stoker 130 'as mixed', high concentrations of TDS require an extra amount to be added depending on the internal conditions of the boiler during the steaming cycle, as this is the case these extra amounts are made as an addition to the normal dosages with the 'treatment dosing instructions' altering accordingly during the early stages of the scheme. If for any reason antifoam is unavailable for a certain period of time, cylinder oil can be added to the boiler water make up which acts as an antifoam18. This application has the beneficial effect of 'lubricating' the steam which in turn extends the maintenance period of live steam control valves (especially if superheated auxiliary steam is used) and allied with the use of stainless steel seated valves represents a considerable saving in this area19.

By the end of the 2000/2001 high summer season, we had achieved what can only be described as a concentrated, fully mobile, brown sludge in the boiler of locomotive No.3. Locomotive No.2 had seen limited service following No.3's return to traffic (even though this was the case it had worked as 'second engine' up until it suffered severe mechanical failure in late February 2001 which meant its withdrawal from service and commencement of rebuild and stage 1 modification), though it was possible to gather in service data during this period of time, including detailed statistics relating to fuel and water consumption and internal boiler water conditions. Up until now we had used 'conventional' (for want of a better description) style washouts. It was decided to convert to the American method of washing out boilers, indeed no other method of washing out is suitable in order to deal with such a sludge in mobile form, and prior to its winter maintenance period (June/early July of that year and in fact the locomotives last 'C' examination at the time of writing) that year the first of such involving this technique was very successfully carried out at Ushuaia. Why is the USA method of washing out so essential to the success of such a treatment regime? If one is dealing with the removal of sludge (and this is real sludge, imagine a very wet clay or even mud on a football pitch - not broken up pieces of scale) that is mobile then the
correct conditions must be created that will allow such to be cleared quickly and in its entirety. If the boiler was sufficiently cooled20 and drained there would be a high risk of the sludge 'baking' itself to the internal water surfaces and in its cold state such would be very difficult, almost impossible in fact, to remove using a cold washing method (even at reasonable washing pressures). The result of that would be the internal water surfaces being left coated with a layer of insulating material thus heat transfer is theoretically reduced resulting in higher operating costs as is suffered with scale build up on these surfaces. Bear in mind that a scale build up of only 1/16" forms a SIGNIFICANT heat insulator21. Practically speaking the residual sludge would very quickly go back into solution upon the start up of the new steaming cycle, but on the other hand if that were the case then why wash out at pre determined interval an any case22? In brief, the American boiler washout method relies on such being carried out in a hot state rather than cold state. At the start of the washout of the washout the boiler should be in 'just off the boil' condition (obviously NOT in steam!). If there is any risk of the internal surfaces temperatures being lower than optimum then the locomotive is lit up for a brief period of time immediately prior to the commencement of washout plug removal23. Hot, pressurised water is used in order to remove sludge and any cases of broken down (softened) scale. During these initial days of the USA hot washout method, heavy duty braided wire (such as is used for telegraph poles due to its combined strength and flexibility) was used so as scrape the water space between the tubes24. Water for washing out is obtained in this form is provided by our mobile pressure washer, however I hasten to add that this is not an ideal technique as such washers are designed to operate for relatively short periods of time, hence a purpose built steam washing plant is the correct installation so as to ensure continuos success25 (and not causing frequent failure of the workshop pressure washer). Washing out is performed in the normal manner, positioning of the lance so as to end up with an accumulation of sludge that can be flushed out of the foundation ring. The internal water surface is left in a 'no scale' and 'no sludge' state. The boiler is re filled with hot water and immediately steamed26 as the boiler has altered its temperature dramatically with respect to the fireside and waterside. Other benefits of washing out hot are that the locomotive is out of service for a matter of a few hours rather than days and return to 'in steam' condition is very short. Availability of the steam locomotive fleet is thus higher and nowadays at FCAF we tend to do wash outs in the evening after the engine has worked its final turn of the day, steam being dropped upon return to the works27 allowing washout to commence not long afterwards. The concerned locomotive is normally back in full steam before midnight, ready and checked over for the next day's service. If you consider that our operation at FCAF requires maximum steam locomotive availability allied with a small number of maintenance staff, then the importance of such modern practices become apparent.

By July 2001 we had adopted the term 'PT' (Porta Treatment)28 for what we were using in recognition of the fact that this was an advancement on the TIA (the latter previously mentioned above). 'Camila's' foam height indicator (the term monitor or meter is also used to describe this apparatus) accommodation bosses and electrodes (common automotive spark plugs) were in place and it had been the intention to fit this system in its entirety during this 6 week shopping period29. Alas, I had made a miscalculation as to the positioning of such! Theoretically the foam height indicator should be positioned between the dome and he smokebox due to the fact that this was an advancement on the TIA (the latter previously mentioned above). 'Camila's' foam height indicator, though this time positioned between the dome and he smokebox due to the throttle operating linkage for this particular locomotive passes through the water space in order to mate the throttle handle with the valve inside the dome itself. Therefore whilst theoretically correct it was not practical to fit the requisite sensors to the electrodes as the throttle linkage was foul of these! The foam height indicator was not connected and trials continued without such. Meanwhile No.2's replacement boiler30 was being modified in order to fit to this locomotive during its rebuild (which was taking place at this point in time) and part of the modifications included the fitting of a foam height indicator, though this time positioned between the dome and he smokebox due to the fact that the throttle valve of this engine is fitted on top of the boiler barrel between the firebox and the dome. We were to see at a much later date the importance of being able to fit such an indicator on the firebox side of the dome31.

High levels of alkalinity keep silica in solution, if this were not the case such would lead to a hard egg shape type of scale. Scale in this form is a silicate (such as glass); therefore gaugeframe glasses can be dissolved. Such is not 'erosion' of the glasses as many have believed it to be in the past as such an action is mechanical; in this particular case it is chemical. Alkali resistant glass should be used for gaugeframes
in conjunction with the PT otherwise the ends of the tubes become dangerously thin\(^32\) and cause a safety hazard for footplate crews. It is interesting to note that fusible plugs have been developed which avoid alkalinity attack and therefore frequent changing, hence premature decomposition of the boiler concentration during a long steaming cycle. The element fusible element composition in these plugs is: \(\text{Pb} \ 88\%, \ \text{Sn} \ 12\%\) allowing a melting point 258\(^\circ\)C.

We have mentioned antifoams earlier in this text. It should be remembered that antifoams are substances that have a limited life in the boiler, exponentially diminishing with temperature. As this is the case a long station stop or layover could result in depriving the boiler water of their presence. As a result of experiencing this first hand with the 15.00 departure from Estacion fin del Mundo\(^33\) whilst on the footplate of 'Camila', a means of rapid injection of antifoam into the feed line was investigated and means of fitting such to this locomotive and No.2 are in progress. Whilst on the subject of rapid injection and mixing of feed elements it is worth drawing attention to the fact that locomotive No.2 is fitted with side boiler feeds whilst 'Camila' is fitted with a top feed arrangement. Tannin as incorporated as part of the treatment for various purposes one of these being to serve as an oxygen scavenger together with sodium sulphite. The physiochemistry of the process of precipitation imposes a submerged feed therefore no opportunity exists to use the steam space in order to de gasify the incoming water as is the case with a top feed system.

With all going relatively to plan as far as the application of the PT to 'Camila' was concerned it was decided to go for a longer steaming cycle and this was achieved during the spring of that year when the locomotive achieved over 90 days in steam on normal passenger train duties\(^34\), the engine only being 'shopped' for a couple of hours during evenings in order to replace its fusible plug at 25 day intervals along with a gaugeglass check. The best that we had achieved before this cycle was 45 days in steam earlier on during the same year, severe attacks of foaming during the 43\(^{rd}\), 44\(^{th}\) and 45\(^{th}\) day signifying that a full washout was required. Working on the principle that boilers should be treated when not in service as well as when in service, treatment of No.2's replacement boiler had begun once it was fitted to the main cradle frame of the engine in September 2001. A high dosage of Stoker 130 was applied along with a relatively high dosage of caustic soda. This was subsequently mixed inside the boiler using a compressed air hose attachment. Once in traffic we monitored the effect of treatment application to a new corrosion free boiler\(^35\). The modified Garratt locomotive No.2 'Ing. L.D. Porta'\(^40\) suffered a premature mechanical failure in traffic on 4/2/02 and PT trials recommenced during November of that year upon completion of a second phase of component repair and renewal. At the time of preparing this paper it is in its second steaming cycle since November 2002, its last boiler washout having taken place on 2/1/03 having completed 43 days in steam\(^37\). The completion of the foam height indicator as fitted to 'Ing. L.D. Porta' has proved to be popular amongst drivers as their 'third eye' so as to keep a close check on internal boiler water events.

Long steaming cycles of locomotives are now normal practice at the railway, if at least 90 days in steam are not achieved then something is suspected to be out of place. The aim is now to double this time period so as to be able to wash out boilers twice a year. Boiler repair and maintenance work have been significantly reduced and locomotive drivers are fully partaking in this interesting project and are now able to 'control' the behaviour of the boiler water by the use of simple instrumentation and chemicals that are applied by hand to the feedwater in the engine tanks.

3. COMMENTS AND CONCLUSIONS

The writer was first made aware of the PT during 1992 and made several attempts to implement such in its entirety as a preventative measure against a predicted 'boiler epidemic' in the UK. It was realised by Porta, and others, that it was impossible to advance steam traction beyond first generation levels without the perfection of internal boiler water conditions. The RFIRT in southern Argentina proved to be a good testing ground for this system and resulted in the boilers the railways Santa Fe class locomotives working for extended periods of time without having to remove such for heavy repair work. During 1969 the Argentine State Railways called upon Instituto Tecnología Industrial\(^18\) to solve the widespread epidemic
of water carryover and severe corrosion problems that its locomotives were suffering in the north of the country. C 16 class 4-8-2 locomotive No. 1802 was set up as a test engine and worked between Salta and Socompa9 (a northern section of the FC Belgrano system). A regular crew was allocated to 1802 accompanied by Porta for most of the in service testing. Boilers in that region were fed with very hard water and these areas had become known as 'boiler cemeteries'. Locomotive boilers had to be washed out every couple of weeks and tubes replaced every 2 years due to severe scaling of the internal surfaces. We should remember that the results of a corrective system are not gained overnight, however by 1974 locomotive 1802, and others of the railways fleet in the same area that had been put on to the corrective system, required washing out only twice a year. This state of affairs represented incredible savings in terms of labour and infrastructure costs, not to mention ease of operation for the crews themselves.

The most important point regarding the PT system is the following: IT IS NOT WHAT IS PUT INTO THE BOILER THAT COUNTS, BUT WHAT ONE ALREADY HAS IN THE BOILER. It is an internal treatment system and therefore relies on what is built up inside the boiler not what is fed into such. This was stressed to the writer in the past and having now gained experience of the system he also stresses this point to the rest of the railway world! The TIA system was the result of the necessity to provide an answer to heavy boiler maintenance resulting from a number of treatments, which included, as in Britain, wayside feed water-treating plants. There is always some good luck involved with development schemes and the writer is of no exception to this rule (as has been proved at FCAF!).

A whole new book could be written on the subject of the PT, this paper merely touches the tip of the iceberg as far as the subject is concerned, concentrating on the recent experience gained during its application at FCAF in Argentina. The writer, as well as being a steam locomotive development engineer, is a practical engineman and therefore much of what is stated here relates to the overall view of making it work in adverse conditions whilst at the same time ensuring that the system is as user friendly as possible.

I would like to recap on some fundamental points relating to such an advanced internal boiler water treatment system:

1. The necessity of an advanced water treatment system for low tech countries led to research and development work that produced a system that was somewhat more advanced than the TIA and British Railways systems. In such an advanced system the boiler is considered as a crystaliser.
2. Highly advanced and very powerful antifoams (such as the Foster Wheeler polyamide type) allow the boiler water chemistry to be 'played' with at will.
3. High concentrations of totally dissolved solids allied with high quantities of sludge formation are aimed for.
4. This type of water treatment is an integral part of advanced steam locomotive technology and it is unthinkable to be able to advance in this field without such.
5. Operation at running shed level has been simplified to the extent that chemists are not required on site.
6. Washouts are surpressed and blowing down is eliminated.
7. Boiler water specifications lie within very wide limits.
8. Very high alkalinity levels are aimed at in the boiler water.
9. The treatment chemicals are designed for rough handling by running shed and footplate staff. One member of staff can control the boiler water of up to 30 locomotives in one running shed.
10. The whole system is based on a revised physiochemistry relating to scale formation phenomena.
11. Chemists carry out their work at central laboratory level, remote to the railway.
12. Foam height control apparatus permit a very high loading of the available steam space.
13. Advanced concepts of points 1 to 12 allow us to envisage the application of corrective treatment or 3rd generation steam locomotives working at 60 bar/550°C.

The writer would like to thank the following for providing their support and interest during this project: E. Diaz, Chairman Tranex Turismo S.A. Ing. S.R. Zubieta, Vice Chairman Tranex Turismo S.A. R.O. Diaz, Director Tranex Turismo S.A. M. Lietti, General Manager FCAF, Ing. E. Sandoval, Operations Manager FCAF, C.K. Parrott, Technical Assistant Tranex Turismo S.A. (UK Division), A. Baeza,
REFERENCE NOTES MADE IN MAIN READING TEXT (APPLICATION OF P.T. INTERNAL W.T. SCHEME AT FCAF, USHUAIA, ARGENTINA).

1FCAF was 'restored' during 1993/1994 on part of the old state prison railway. It was re opened as a commercial tourist passenger line on 11th October 1994. The driving force behind the project to re open the railway was the eminent Argentine entrepreneur, Enrique Diaz. He had already set up a successful international shipping agency during 1987, based in Ushuaia, Tranex S.R.L. In his much younger days, Diaz had served as a merchant navy officer and during his spare time in British ports he had the opportunity to travel inland and see the Welsh narrow gauge. This experience inspired him to concentrate efforts on such schemes in his native Argentina. Tranex Turismo S.A. was formed during 1993 and are the owners and operators of FCAF. It is interesting to note that Diaz was already planning on moving tourists by ship from Ushuaia to Isla del Estados as early on as 1991 and he went as far as Finland during 1992 in order to investigate how this might be done efficiently and economically, the reader may like to ponder over whether had this scheme been successful would Tranex be running a fleet of steam ships rather than steam locomotives nowadays? The present length of FCAF is 5.25 km with adverse gradients, the most severe of these being in 22 on the outward journey at the approach to the intermediate station of 'La Macarena'. The mainline passenger service is operated by 2 steam locomotives - No.2 'Ing. L.D. Porta' (formerly named 'Nora'), 0-4-0 + 0-4-0 KM Garratt, built at Carupa workshops, Buenos Aires, Argentina in 1994 and No.3 'Camila', 2-6-2T, built by Winson Engineering of the UK in 1995. Both steamers have undergone stage one modification and rebuild as part of the ongoing FCAF locomotive modernization scheme, this work being carried out at FCAF’s 'End of the World Workshops' at Estacion fin del Mundo, Ushuaia. Stage 2 modification of both locomotives is to be undertaken during the next couple of years as money and resources become available. The diesel fleet, used for standby, shunting and engineering train duties consists of locomotives No.1 'Rodrigo', No. 4 'Tierra del Fuego' and No.5. A new steam locomotive, designated LVM 803, is in the design stage at the time of writing. The specification for this engine, FCAF fleet number 6, represents a state of the art 2nd generation machine employing compound expansion rather than simple expansion as used in locomotives 2 and 3. The extension of the line to the city centre of Ushuaia is planned to take place within the next 3 years, with planning almost complete. For most of its 10 km route the extension of FCAF will form a new permanent way, the former having been heavily built upon during recent years as part of the continuing development and expansion of the city of Ushuaia. Apart from the LVM 803, new passenger and engineering rolling stock are in the pipeline.

2The writer first visited FCAF during July 1998. Initial in service testing of locomotives 2 and 3 took place and a general technical review of the railway was carried out at the same time. A report on such was written and submitted to Tranex senior management. This review of the state of affairs found at the time formed the basis for a multi stage upgrading of the railway in order to meet predicted traffic demands. The latest high summer traffic figures (2002/2003 Southern Hemisphere summer) have proved how accurate these predictions were.

3FCAF is the most southerly railway in the World being some 360 km (601 km by road) nearer to the South Pole than the neighbouring Red Ferroviario Industrial Rio Turbio. Ushuaia is just over 2,300 km south of the capital Buenos Aires (very little in terms of populated areas separate the two locations). As a result of the geographical location of FCAF the reader can imagine the difficulties experienced in conjunction with maintaining the infrastructure of such a line!

4L.D. Porta officially served as Engineering Consultant to FCAF between 1997 and 1999 and it was as a result of this that the writer was made aware of its existence (personal correspondence between Porta and the writer dated 4/1/97 and 19/4/97). Porta made an initial critical review of the railway upon his first visit and described it as "the presentation card" for future projects to be undertaken by Tranex Turismo S.A.
One such project that the company was working on at the time being the development of a broad gauge, steam hauled luxury train service between the capital city of Buenos Aires and the coastal resort of Mar del Plata. It was this particular project that had attracted the writer to work for Tranex and the original intention had been for him to spend some 2 years upgrading FCAF before moving north to continue with the Bue/MdP scheme. To date this development project has not materialized due to provincial difficulties however there is still hope as the project file is still on the table in Buenos Aires. In order to operate this daily service it was the original intention of Porta to modify 2 existing ex state railways 4-8-0's that happened to be in stock in Buenos Aires at the time. This modification scheme would have involved raising the indicated horsepower of locomotives in question to a diesel equivalent of 3000, this being necessary in order to keep up with existing timings on the 400 km route allowing high acceleration rates and a normal running speed of 130 km/h. An improved oil burning system was to be used along with feedwater heating, advanced internal feedwater treatment and a high degree of superheating allied with mechanical improvements. Other locomotive projects that Tranex's Technical Development Department have been involved with during recent years were the LVM 801 for 'Tren a las Nubes' in northern Argentina (a new 2 - 8 -2T 2nd generation steam locomotive with a water carr added for use on the outward 'mountain climbing' part of the journey that allows the full use of the 'supply ballasting principle' quick release couplings allowing this to be rapidly detached from the engine unit for the return downhill journey, such a scheme would have enabled this railway to run a full steam tourist service from its base in Salta to its terminus high up in the Andes at Socompa and was first proposed by Tranex Chairman E. Diaz during the inaugural meeting of the Association of Argentine Tourist Railways held at Ushuaia during June 1999), a design to convert an ex Chilean Railways Class 57 from conventional coal firing to a modern oil burning system (this scheme also included other modifications such as improved exhaust system, motion and valve gear) and the inspection and overseeing of transportation of 2 Indian Railways YP class steamers from India to a new temporary home in Togo, Africa on behalf of the north American company Rail Development Corporation (a modification scheme which included options for converting from conventional coal firing to oil burning or wood firing using the gas producer combustion system, regauging and conversion to air braking was also drawn up at the time). From early 2000 onwards Porta continued to assist the writer on a personal basis with matters concerning steam locomotive development.

Whilst the writer is an advocate of 'free creative thinking'; the application of quantified improvements in the field of steam locomotive engineering must be carried out under controlled conditions. A common vice within railway administrations worldwide is to wrongly blame any failure on the 'idea' and not the 'application of the idea'.

Following the Second World War improvements to, or rebuilding of, the older French locomotives (the type of treatment required and the engines to which it should be applied) were decided subject to any alterations in the depreciation programme. In brief the plans included improvement of steam circuits, improvements to exhaust systems, feed water heating and the fitting of water purification devices. This last matter was met by the TIA system (a much asked question is 'what does TIA stand for?' the answer being that TIA stands for Traitement Integral Armand, the highly effective method of water treatment invented by M. Armand). By this system a 'disencrustor', consisting of carbonate of soda, phosphate of soda, caustic soda and tannin was introduced into the feed water by a distributor. Armand had started working on this system in 1940/41, basing his investigations on the physico-chemical action of tannin on a soda environment and, at the temperatures of boilers, on the calcium encrusting salts. The particular importance of this equipment was that boiler repair constitutes the most expensive part of steam locomotive maintenance and that the introduction of water purification on American railways had reduced this cost by some 50 to 60 per cent.

Some years prior to being employed by Tranex the writer had begun research work into internal boiler water treatment systems in the UK. The British private chemical treatment company, M & S Water Services Ltd. had looked closely at the work of Porta in this field and essentially followed the same train of thought as far as this was concerned. This state of affairs eventually led to the writer being offered a permanent position within that particular company in order to set up a section devoted to steam locomotive internal boiler water treatment in the UK and possibly further afield. This fairly lucrative offer was humbly declined as the writer's plans to move to the Alfred County Railway in South Africa were...
well advanced by the end of 1993. However relatively successful internal water treatment systems based on the adoption of Porta's thinking and practices by M & S (and others) were implemented at the Ffestiniog, Welshpool & Llanfair, Snowdon and Isle of Man Railways, some years later the Vale of Rheidol Railway also decided to adopt an internal treatment system. Upon applying an internal chemical treatment system at the Alfred County Railway, the writer was soon accused of applying 'witchcraft' to the steam locomotive fleet when he was to be seen directly dosing the boiler barrel of NGG 16 Class Garratts on shed at Port Shepstone depot following boiler washouts. It was thereafter explained to Mandla Cele (the boilermakers assistant) that what we were putting into the locomotives water tanks and boilers was actually for the benefit of the engine and not to harm it - some time had to pass before Mandla was fully convinced of this fact. Though the operating department of ACR was issued with a strict instruction to the effect of not blowing down the locomotive boilers, this long established South African Railways practice (it could probably be more accurately described as a ritual on the SAR!) was very difficult to control. As a result of this (minor, continuous boiler leakage was also a contributory factor due to the, by then, slack boilermakers attitude), the high level of totally dissolved solids required in order to achieve the predicted results was never attained, nevertheless clean boilers on this privatised section of the SAR system were achieved.

Internal water treatment can be divided into 2 generations according to Porta's research and development work on the subject, these being: BEFORE the adoption of antifoams and AFTER the adoption of antifoams on the locomotive scene.

For detailed, illustrated and up to date accounts of the work carried out to the FCAF steam locomotive fleet, the reader is invited to visit the various websites listed in the reference and bibliography section of this paper. 'La Locomotive Vapeur' (A. Chapelon. English edition translated by G. Carpenter and published by Camden Miniature Steam Services 2000) also gives an accurate account of the FCAF steam locomotive development program up to the end of 2000. 'Locomotives International' issue No. 62 carried a brief article describing the rebuilding and first stage modifications to FCAF's Garratt locomotive No.2. The 'End of the World Workshops' refer to the workshop installation at 'Estacion fin del Mundo' (End of the World Station) and is meant to reflect its geographical location, not its possible effect on the moral of the workshop staff!

The thermodynamic improvements carried out to 'Camila' as referred to in 9 allowed the concerned locomotive work to its full potential (taking into account of course its still unresolved defects). Solving one problem often leads to revealing another associated with the locomotives design and/or subsequent lack of repair and maintenance. This overall view of the steam locomotive should not be lost site of (as indeed for any machine), as a chain is only as strong as its weakest link. Camila and the FCAF at that point in time of its evolution had many such weak links as the writer was to find out almost on a day by day basis!
the outer firebox sheets only thus no cross check along the foundation space was available, no backhead plugs had been provided, mudhole inspection doors in the upper/outer firebox had been blanked off from accessibility by the original boiler cladding, no front tubeplate boiler plugs had been provided, the throttle valve fitted was of a spherical type and the drawings supplied by the manufacturer did not match the manufactured boiler. At the time of building No.2 a set of spare parts had also been made, including a whole new boiler which carried the same faults as described above. It had been the intention of the company to build a second Garratt locomotive in order to strengthen the existing fleet of steamers. As a result of this decision these spares were sent away to the workshops of Girdlestone & Associates in South Africa during early 1999 (at that point in time Girdlestone & Associates were in the process of manufacturing a new diesel locomotive for FCAF - 'Tierra del Fuego', fleet No.4) with a view to commencing the manufacture of 'Nora 2' (as it had become known at the railway by then) early in the year 2000. Due to an economic crisis the manufacture of such was delayed and when No.2 suffered severe mechanical failure in traffic during late February 2001 a vast number of these spares were used in order to replace existing worn out components during the rebuild and stage 1 modification. The spare boiler was modified to the extent that it was now 'legal' to use having had a fusible plug fitted along with a second water gauge glass and the opportunity was taken to install a foam height indicator. This boiler replaced No.2's original during the rebuild, as upon inspection the crownsheet of the former showed signs of extreme bulging between the crownstays. Locomotive No.3's boiler revealed that no fusible plug had been fitted during its manufacture, however a modification had been made a couple of years later which provided such in the firebox crownsheet. The manufacturers had however provided a low water indicator attached to an upper backhead washout plug but this had failed not long after the locomotive had entered traffic during 1995, likewise by the time that the writer arrived at FCAF the fusible plug that had been fitted to No.3 had been blanked off by an old bolt as it proved to be 'a nuisance to crews when it leaked water into the firebox and began to put out the fire' (readers are invited to draw their own conclusions as to early operating and maintenance practices at FCAF). The foundation ring had been provided with 'diagonally' fitted washout plugs, whilst this allowed access to wash out nearly all of the foundation ring as long as one used a specially adapted head for the pressure washer along with flexible steel rodding, it made visual inspection of the water space in this crucial area very difficult indeed. The washout plug accommodation bosses as fitted to the foundation ring were very long and therefore made life extremely difficult when it came to washouts. No dry pipe had been fitted for the auxiliary manifold and this allied with a round top firebox as opposed to a Belpaire type box made life interesting to say the least. The throttle valve had been positioned very low down in the dome; in fact the dome itself was very low with the brass cover giving an optical illusion as to the reality of what lay beneath. Both boilers suffered in having been manufactured using rigid stays as opposed to flexible stays coupled with the fact that that the inner and outer firebox had been joined by welding the corners at right angles, this included the foundation ring. Neither of the boilers had been fitted with gaugeglass frame extension tubes so as to give 'true' readings of boiler water levels rather than the optical illusion created by the circulation hump that appears at the backhead. As part of the stagework of the FCAF locomotive modernization scheme, it was decided to partially modify locomotives 2 and 3 concurrent with heavy overhaul in order to provide 'demonstrators' of what could be achieved with minimal investment in a very limited timescale. In this state the FCAF locomotive boilers are still in saturated rather than superheated state therefore the full benefits of modification have yet to be reaped at Ushuaia. Stage 2 modifications, again at minimal financial outlay, are planned for both steamers and design work for such is well in hand. The focal point of this work is the heavy rebuild of No.2's original boiler and No.3's existing boiler. In the case of No.2 it is convenient to prepare the original boiler (removed 2001) before stage 2 work commences on the locomotive itself thus not having to withdraw such from traffic at a premature point in time (i.e. revenue earning capacity will not diminish relative to time). Boiler work will consist of designing and manufacturing a new Belpaire type firebox with rounded corners and replacement of the rigid stays by the flexible Tross type. The foundation ring of such will be of the 'U' Tross design and the auxiliary manifold will be moved outside the cab in order to improve crew comfort and satisfy safety requirements. The design of the longitudinal stays will be improved as well as mounting on the carrying cradle. The boiler will be superheated, some 75% of the tubeplate will be occupied by superheater flues whilst the remaining smoke tubes will be fitted with a 'superheater booster'. The fitting of a superheater header and feedwater heater will require the existing smokebox to be lengthened so as position the exhaust system...
directly in between the 2 components parts (the exhaust system may need some alterations to be carried out as a result of the boiler gas flow cross section area being altered during superheating). The boiler of locomotive No.3 will receive similar treatment as to that of No.2 however in addition will receive a new oil firing combustion system and therefore the volume of the firebox will alter accordingly. Both boilers will receive combustion primary air pre heating and feed water pumps. The position of No.3’s rebuilt boiler will be slightly higher as fitted at the moment yet it is not planned to dramatically alter the overall shape of this very aesthetically pleasing and popular locomotive. This particular area of design has often been overlooked by many and it should be remembered that it is not necessary to alter the overall 'form' of something in order to improve it when a little reshaping of component parts can achieve the same result.

Up until 1993 the writer had been accustomed to determining boiler washout frequency at mileage intervals. This practice, whilst reflecting the steaming rate of the boiler as long as the locomotive concerned is being 'worked' rather than coasted, does not take into account the true 'in steam' conditions of a modern, highly insulated boiler that retains its pressure overnight. For this reason (whilst as yet FCAF steamers do not fully hold boiler pressure overnight) the writer decided to adopt the South African Railways practice of counting days in steam between washouts rather than kilometers run. The latter's requirement to adopt such a system was due to the fusible plugs being changed at 21 day intervals whether the locomotive in question was steamed or not, all fusible plugs being date stamped so as to reflect the frequency of re leading and replacing. Research and development work in this field had taken place at the Alfred County Railway, South Africa during the late 1980's under the direction of its Mechanical Engineer P. Girdlestone and such allowed fusible plug replacement to be extended to a safe 25 day steaming period.

We had begun this practice once 'Camila' was out shopped during late November 1999, however as our attention was focussed on the in service testing and general performance of the locomotive following major overhaul and initial modification (and dealing with odd daily crisis that came our way!) attention to the exact amount of treatment added to the feedwater was surprisingly low on the agenda. At the time of entering service in 1999 'Camila' was still suffering from leaking tubes, though seal welding had been carried out during August of that year. The problem was temporarily solved by adding fine sawdust shavings and horse droppings to the boiler water - the smell of the steam emitted in the station area was not always appreciated by the traffic department staff.

This was the best physical description that the writer could give to the local locomotive crews. Red wine is very popular (and very nice!) in Argentina with water occasionally being used by some to dilute it slightly at the dinner table.

There are many reasons for locomotive boiler water being carried over into the steam circuit. The terms 'priming' and 'foaming' are commonly used to describe this action, though the reasons for both cases are different. A good summary of boiler carry over/steam contamination is given in Porta's introduction to the boiler foam height monitor and reads as follows (the present writer has made a few minor alterations to the wording in this text, though on the whole it is exactly as Porta wrote it in 1984): Technically, pure steam is a must in locomotive technology. Impurities result from boiler water solids being entrained by four mechanisms - 1. Aquaglobejection, in which tiny water drops resulting from the bursting of bubbles in the water/steam interface are projected into the steam space as in the case of a soda glass. 2. Light foaming, in which the whole of the steam space is partially or completely filled up with large foam bubbles. 3. Heavy foaming in which the liquid concentration of the foam filling the steam space greater up to the point of showing as wet steam on the exhaust. 4. Heavy contamination consisting of slugs of water entrained as a result of a violent increase in the steam demand leading to a rapid pressure drop, the latter causing a steam flash over the whole mass of boiler water. The resulting swelling is the cause of the slugs. Provided that there is a foam layer on the water surface, mechanism 1 does not occur. This condition is met when the TDS is greater than 6000 ppm and a powerful (not all antifoams are powerful!) is used. Reaching this concentration of TDS in the boiler as quickly as possible after washing out was found to be convenient in research work carried out in Germany. Mechanism 2 was the most frequent condition found when no antifoams were used, this leading to some 2% moisture in the steam. Mechanism 3 occurs as a result of an increased tendency of the water to foam whilst mechanism 4 occurs...
when the said sudden steam demands are not instantaneously counteracted by the production of steam by an instantaneous increase of heat liberation in the furnace. This can occur, in coal burning locomotives, if the fire is too thin and in oil burning locomotives if the fireman does not react almost instantaneously with the oil valve. ALL DESCRIBED PHENOMENA HAPPEN WITH GREATER INTENSITY WHEN THE STEAM SPACE IS SMALL, hence the sensitivity of the old men to work with "no more than three fingers in the glass!" When a powerful antifoam is added and boiler water conditions are appropriate for its action, (the presence of tannin and high alkalinity when diestearilethytendiamide is used), bubble bursting over a 2 to 3 inch foam layer occurs in such a way that mechanism 1 does not happen, no foam fills the steam space (which then shows transparent) and technically pure steam results even if the volume of the steam chamber is perhaps as small as one third of the normal. This occurs no matter what the TDS (tests having been made up to a level of 50,000 ppm) or the suspended matter concentrations are. Thus it is possible to work with the boiler at maximum load even with the water "on the top of the glass". A powerful antifoam can only palliate the effects of mechanism 4, the only cure to this being careful driving. Residual contamination (about 1 to 2 ppm) occurs mainly because the flow of steam in the steam chamber entrains liquid much like the wind entrains liquid droplets over the surface of the sea.

18Years of experience have proved that the presence of superheated cylinder oil in the boiler water is harmless, this is contrary to the widely held opinion on the matter. Cylinder oil in this form has been used as an antifoam at FCAF and many other locations in Argentina in years gone by. To date experimentation has not taken place so as to verify that such satisfies steam purity requirements. It is also known that in Spain fuel oil was used as an antifoam during the curtailment of imported American antifoams and local development of such. No damage was produced in the boilers of the concerned locomotives, though throttle valves were found to suffer from carbonisation. Cylinder oil can be applied in this manner by the use of a simple reservoir and valve arrangement, on the Welsh narrow gauge system the throttle valve lubricators as fitted to the Great Western Railway locomotives of the Welshpool & Llanfair and Vale of Rheidol Railways act in the same way. FCAF steamers have yet to be fitted with application valves, however cylinder oil is added directly to the water make up via the auxiliary manifold or spray (slacker) pipe operating valve.

19The conversion of FCAF locomotive control valves to the stainless steel type began during 2001 and it is planned that such will be complete by mid 2004 if not before.

20FCAF locomotives have highly insulated boilers, steam circuits and cylinder blocks (including 'between the frame' insulation). Though full boiler pressure (in the case of No.2 reasonable boiler pressure is maintained overnight) is not maintained overnight as yet, the natural cooling down of the boilers takes several days to achieve.

21Refer to notes 10 and 12 above.

22This question as posed to the reader has a deeper meaning relating to the extended frequency of boiler washouts under a modern internal boiler water treatment regime and is intended to stimulate the intuitive mind. A good example was a question posed to the writer by Porta asking how it was possible for a Rio Turbio 'Santa Fe' Class locomotive able to work forwards in 20% reverse gear? He insisted that there was a sensible answer to this question!

23All FCAF steamers are oil burners (gas oil supplied by YPF being burnt instead of bunker oil or waste oil) rather than coal, wood or biomass burners. Zero spark emission must be guaranteed within the densely forested Tierra del Fuego National Park. Likewise minimum smoke and noxious gases are avoided as the company makes stage by stage improvements to its oil firing combustion systems allied with the fitting of state of the art Lempor exhaust systems. 'Camila' is fitted with its original American style flat trough burner which employs external atomisation. In contrast 'Nora's' flat burner was replaced by an internally atomised rotary burner during its rebuild and modification of 2001. At the time of writing comparative testing of the old and new systems as fitted to each locomotive using a modern industrial gas analyser is under way, it is expected that full test reports on the performance of each locomotive following stage 1 modification will be available during March 2004. Superheated steam for burner atomisation has been applied to both engines, at the time of writing such has been removed so as to carry out quantitative testing in this area (i.e. before and after results), the use of superheated steam for oil
burning applications has proved to be successful. Closely controlled solid fuel trials have been carried out at FCAF (outside of National Park boundaries) and the successful burning of unseasoned wood logs was noted using a 'reactive' exhaust system.

24The tube bundle of a smoke tube boiler represents a vulnerable area as far as scale build up is concerned and as far as we were concerned at FCAF was the last and most difficult place from where we had to extract broken down scale. Once back in traffic during August 2001 the improved steaming of this engine was noticed by drivers (the writer being one of them!) and was reflected in reduced fuel and water consumptions.

25In the United States full washout houses supplied with continuous boiling water supplies from adjacent plants were built into steam locomotive depots.

26It is common to perform a 'slow warm up' when re lighting oil fired boilers from cold state. This in effect simulates the slower heating up action of a conventional coal fire. At FCAF this method of re lighting following washout has been done away with following adoption of USA washing out methods. At the time of writing 'Camila's' boiler has not cooled down since outshopping from exam 'C' during late July 2001.

27FCAF locomotives 2 and 3 are fitted with steam sampling valves (this fitting consisting of a valve and condensing pipe) which can also be used as pressure relief valves when lowering of the boiler pressure is required.

28The official language of Argentina is Spanish (in fact it is the official language for the whole of Latin America apart from Brazil, which adopted Portuguese due the Catholic Churches' division of south American land between Spain and Portugal), however many English phrases are employed in the particular dialect of this language as spoken in the country. For example 'OK', 'Stop' and 'Yes' can be often heard spoken by Argentines who are not the least bit fluent in the English language - PT should really have been christened TP if the Spanish lead were to be followed! Another American English language carryover into the Spanish language seems to have been the adoption of FC to represent Ferrocarril as RR stands for Railroad in the United States - can you see a second capital C or capital R in the respective translations of Railway? The narrow gauge railway was originally referred to as FAF and at a later date FcAF, though both are grammatically correct as far as the Spanish language is concerned, FCAF is the correct railway representation!

29The boiler foam height monitor is based on the signal foam meter developed around 1940 by the Dearborn Chemical Company of the USA and was modified slightly by Porta for application during water treatment trials in Argentina. In essence it allows the driver to 'see' inside the boiler and is a great practical aid for monitoring internal conditions of the boiler water. It is an essential tool when working with antifoams and has been known to allow superheater elements last up to 30 years without repair or replacement. The system consists of an electrical circuit which is closed when the top of the foam layer touches the tip of the electrode sensor extensions mounted in the steam space. As this is the case a series of indicating lamps are lit, such forming part of the locomotives 'flight deck'. The electrode extensions are positioned at varying heights over the minimum water level, the longest one corresponding to 'half a glass' indication, the intermediate one to 'full glass' indication and the shortest one to 'over the top nut' indication. The circuit is fitted with test switches corresponding to the respective indicating lamps, thus the driver is able to carry out a functional check prior to departure. The system is permanently connected though an 'on/off' control switch is provided on the locomotives electrical control panel. In NO CASE is the system to be connected to other apparatus or its indications to be related to safety.

30Refer to note 13 above.

31The sketch drawing in Porta's detailed paper on the foam height indicator shows the electrodes as positioned between the firebox and steam collecting dome, however this relates to locomotive designs that have throttle linkages that do not pass through the water space down the centre line of the boiler - for example throttle valves located in the smokebox with external drive linkage. The electrodes must be fitted on the centre line of the boiler barrel so as to give true foam height readings.
32Whilst using non-alkali resistant resistant gaugeglass tubes it was common to replace these at the same time as the fusible plugs, both at ACR and FCAF. A few isolated cases of gaugeglass failures has been known to occur due to insufficient care being taken to monitor the conditional behaviour of such fittings.

33The threshold of antifoam concentration in the boiler is hard to define, but it can be said that the smaller the water content per unit of water evaporated per unit time then the better. This is the case for modern high draughted boilers, such as the ones fitted to FCAF locomotives 2 and 3. However, even though No.3 is a moderately modified locomotive with an efficient exhaust ejector it would carry over its water due to foaming on the heavily graded approach to La Macarena station some 7 minutes into the journey.

34For a large part of this steaming cycle, Chris Parrott, Technical Assistant UK Division, Tranex Turismo S.A. was the regular driver of 'Camila' and the opportunity was taken for him to record as much detailed in service technical data as was possible at the time.

35By the time that the modified locomotive was ready for steam testing during December 2001, the internal water surfaces of the boiler were seen to be clean, and by the time the boiler was first washed out on 4/1/02 following a very short steam cycle of only 14 days it was apparent that the internal surfaces were a brilliant grey colour. The writer had witnessed this effect before during observation of Welshpool and Llanfair Railway locomotive boilers following treatment using M & S Water Treatment Services chemicals but never to such a rapid effect as that experienced with FCAF’s modified Garratt.

36Locomotive No.2 was renamed 'Ing. L.D. Porta' at a ceremony attended by over 80 invited guests at Estacion fin del Mundo on 11th December 2001. The locomotive had been previously named 'Nora'. The rebuilding and first stage modification of No.2 constituted a replacement of about 70% replacement component parts and a brief review of the work carried out is attached to this paper as an appendix. Porta himself attended the ceremony whilst the locomotive was christened by Mrs. H.M. McMahon. Porta celebrated his 80th birthday during March 2002 and the renaming of the locomotive combined with the painting of the locomotive in bright red livery according to his principle that all locomotives incorporating his technology should be painted this way, were carried out in recognition of this milestone.

37This particular washout coincided with a replacement of the fusible plug and the attendance of D.T. Morgan, Chairman of FEDECRAIL at FCAF. It would have been possible to run the locomotive longer before washing out took place however it was convenient to inspect the internal surfaces at a relatively short interval due to the boiler being 'new'.

38Refer to note 11 above.

39Nowadays used by the commercial tourist operators of 'Tren a las Nubes'.

40Porta took the opportunity to modify 1802 prior to the water treatment trials.

41During earlier trials of the PT system in Argentina and more recently at FCAF, the testing of the feed water to the locomotive water tanks was deliberately ignored so as to allow concentration on internal boiler conditions.

42Not a single visit has been made by a chemist to FCAF during the 4 years of application of the PT system to its locomotives. An analysis of the boiler water is made when water samples are occasionally sent to the chemist's laboratory in Buenos Aires. So far the advice of a chemist has not been required in order to solve any problem that occurred during in these trials.

REFERENCE & BIBLIOGRAPHY – APPLICATION OF THE PT INTERNAL BOILER WATER SYSTEM.

1. 'The Red Devil and other tales from the Age of Steam', Wardale, D. Published Wardale D. Inverness, Scotland 1998.
20. 'Prototype Class NGG 16 A Locomotive No. 141 - Instructions for Footplate Staff', Girdlestone P. CME Alfred County Railway, Natal, South Africa 1989.
22. 'Fugas en la placa tubular No.1 de las calderas humotubulares', Porta, L.D. INTI, Depto de Termodinamica, Buenos Aires 1980.
23. 'Specifications for a 0-6-0, 500/600 mm gauge, 150 HP Locomotive design', Porta, L.D. Tranex Turismo S.A. Buenos Aires 1998.
27. Websites relating to the steam locomotive modernisation programme of FCAF:
 http://www.trendelfindelmundo
 http://www.trainweb.org/tusp/
 http://www.5at.co.uk/
 http://railwaysofthefarsouth.co.uk/
 http://www.martynbane.co.uk/

FERROCARRIL AUSTRAL FUEGUINO - LOCOMOTIVE No.2 - BRIEF REVIEW OF STAGE 1 & 2 WORK.

1. Replaced boiler.
2. Modified position of boiler.
3. Foam height meter.
4. Installed fusible plug.
5. Fitted second water gauge to backhead.
6. Improved ergonomics.
7. New live steam pipes - enlarged section, streamlined.
8. New exhaust steam pipes - enlarged section, streamlined.
9. New live steam branch pipes (Y piece).
10. New exhaust steam branch pipes (Y piece).
11. Lempor exhaust manifold.
12. De laval blower.
13. Lempor chimney.
14. Modified cab structure.
15. Replaced wheelsets.
17. Replaced axleboxes.
18. Replaced axlebox roller bearings.
19. Replaced rod end roller bearings.
20. New design of drive crank - replaced.
22. New design of eccentric crank - replaced.
23. Replaced eccentric crank pin.
24. Modified eccentric rod ends to housed roller bearings.
25. Fitted proportionally fed and extended mechanical lubrication system.
26. Insulated cylinders and valve chests.
27. Insulated live steam pipes.
28. Insulated exhaust steam pipes.
29. Insulated between the frames box section.
30. Replaced piston rings.
31. Replaced valve rings.
32. New fuel tank.
33. Modified front and rear water tanks - greater capacity.
34. Electric lighting - headlamps, motion, cab, injector.
35. Pedal operated, bi directional air-sanding gear.
36. New burner.
37. New panplate.
38. Brick arch and refractory.
40. Steam sampling system.
41. Improved climbing handles and steps.
42. Modified smokebox door.
43. Test instrumentation.
44. Flange lubricator system.
45. Rail cleaning jets.
46. New injectors x 2.
47. Balancing of reciprocating components.
48. Modifications to air pump - insulation.
49. Carried out sealing repairs to cylinders so as to cure leakage.

STAGE 1 OUTSTANDING WORK - TO BE INCLUDED IN 2003 WINTER MAINTENANCE SCHEDULE.

1. New fixed pilots as per Camila design 2001.
2. Extended drawbars to suit I.
3. New snowplough x 2.
4. Fitting of Rio Turbio screw reverser.
5. Modify RH cab side so as to accommodate 4.
6. Final modifications to combustion system as required from testing period 2002/2003.
7. Valve gear overhaul.
8. Repaint in new livery.

AREAS OF DOUBT AS FAR AS RELIABILITY IS CONCERNED.
1. Valve bodies - showing signs of break up.
2. Pistons - as for 1.
3. Connecting and coupling rods - origin of design not known, material not confirmed, crystalline state of material not known.
4. Valve gear - as for 3.
5. Unit pivots - design does not conform to any standard, break up of centres and bearing housing evident at present strip down.
6. Strength of locomotive cradle due to lack of original design information. Material not confirmed.
7. Robustness and alignment of power unit frames.
8. Bracing of unit frames by current stretchers does not conform to any laid down code of practice therefore gives cause for concern.
9. Cylinder and valve chest bodies showed signs of decomposition under normal welding repairs to cure steam leaks, leads to suspicion as to the selection of original material.
10. Firebox square corners.

The work carried out at stage 1 should allow us to obtain some 22,000 km from the current driving wheels before they begin to break up in the same way as the originals did. This allows us some 3 operating years in order to finalise all design work for the stage 2 modifications and even time to prepare the components for fitting with the engine remaining in traffic rather than manufacturing and fitting as has been the case up to date. Likewise it would be convenient to use the allocated time in order to design the new components for Camilla stage 2 work and the new locomotive LVM 803 so that manufacturing can also take place in parallel at designated factories and workshops so as to reduce costs.

STAGE 2 - 2005.
1. Modified boiler in order to increase efficiency by high degree of superheat. Use existing barrel in order to reduce cost, replacing firebox with round corner Belpaire type, tubeplates and adding a superheater along with superheater booster and roughened smoke tubes.
2. Additional firebox, barrel and smokebox lagging so as to further increase efficiency.
3. Feed water heater - fit in front of chimney, extend smokebox so as to accommodate such.
4. Feed water pump.
5. New design of unit pivot based upon known designs in daily service.
7. New design of Piston.
8. New design of multi ring, lightweight, articulated piston valve.
11. New cylinder and valve bodies to be fitted if material testing of originals reveals sub standard material was used during manufacture. Opportunity to be taken to redesign valve chest (larger volume).
12. Fitting of new adjustable shoes and wedges to axleboxes.
13. Modify and rebuild brake gear.
14. Modify handbrake arrangement.
15. Fit steam brake.
16. Redesign and manufacture new driving wheelsets, these should allow for proper tyreing standards and integral balancing.
17. Redesign motion and valves so as to incorporate lightweight reciprocating parts of correct section and geometric accuracy.
18. Check and revise as required the alignment of the power unit frames.
19. Reinforce power unit frames as required.
20. Structural modifications to engine cradle as required.
21. Modifications to exhaust system as a result of altering the gas flow cross sectional area in 1.
3 - A Methodical Approach to Assessing the Significance of Railway Artefacts

Richard Gibbon, BSc Eng. C Eng. F I Mech E.
Head of Engineering Collections at the National Railway Museum in York, UK.

The Railway Heritage Committee was established in 1993 as a government appointed body to oversee the selection and preservation of significant and deserving railway items once the life of that item on Britain's railway was over.

This came about because the privatisation of Britain's railways effectively terminated the National Railway Museum's power (which we had enjoyed since the passing of the 1968 Transport Act) to select or "claim" artifacts and records that they believed would be worthy additions to our collections.

In order to make sure that such items did not get destroyed in the new network, two separate sub-committees, answering to the main Railway Heritage Committee, were set up. The Records subcommittee dealt with records and two-dimensional items and the Artefacts Sub-committee dealt with "moveable three dimensional items". We defined an artefact as something that could with reasonable determination, could be moved. (So for example, a wooden signalbox is an artefact whereas a viaduct is not!)

Artefacts are brought to the attention of the committee by members of that committee, railway workers or members of the public. They are investigated and discussed. When it is felt that an item is worth saving then the main committee can "designate" the artefact. Once this has been done then the item is given a special status which theoretically protects it from destruction. The owners are notified of its special significance and are prevented from disposing of the item without the blessing of the committee. At this stage the committee can "direct" the item to a suitable home in preservation where the committee feel the item has the best chance of surviving and being accessible. The new owners may have to recompense the old owners for the loss of the scrap value of the item, but usually this is not an issue.

That system might appear to be a perfect solution to the problem of saving artifacts from the living railway. However the committee found themselves struggling with widely variable assessments of the significance of various items that it was called upon to deal with. There was an alarming tendency to recommend "designation if in doubt" which was clearly unsatisfactory for everyone as it brought some items into the net which should not have been there.

Members of the committee devised and implemented a numerical system of scoring the items against agreed criteria. This process had of course been going on subconsciously prior to the introduction of the scoring system but the new system enabled us (once we were experienced in its use) to set a "cut-off" score which meant that if an item did not achieve at least that figure it would not be considered further.

It is important to understand at this stage that the items that the RHC Artefacts committee was considering, all had to be "within scope" of the RHC's deliberations. That means that the objects must be or must have been in the ownership of British Railways Board and its immediate successors.

Let us consider the criteria that the committee agreed as descriptors.

- **a. That they are unique, as made or built / the last remaining one of a group or class/ extremely rare.**
- **b. That they are representative of a group that merits preservation.**
- **c. That they are illustrative of a type of activity that merits preservation.**
- **d. That they represent an important technical or operational aspect of the railway.**
- **e. That they represent an important aspect of the social impact of the railway.**
f. That they form part of an established series or part of an assemblage that is being collected by a recognised institution.

g. That they represent an important stage in development.

h. That they have been involved in some significant event, or have associations with an important person or organisation.

i. That they are of local, regional or national importance.

• The scores are on a scale of 0 to 10, and each item can score 0, 1, 2, 6 or 10.
• Every item must have at least one 10 to get through.
• Every item must score above 25 in total to get through to be considered.
• Every item must have some score in category "i"

Each of the criteria gives us links into the importance of the object.

Early trials of the system did not have the numeric weighting showed below the criteria, and although outstanding and important items were clearly defined there was a large body of material in the middle ground with little or no numeric separation. The scheme fitted the classic "normal distribution" curve with which I am sure we are all familiar.

A refinement was thus introduced which limited the scores to a crude "logarithmic" type scale which encouraged better separation of the final totals, and fitted our intentions very well.

In the event of an item scoring a total which comes less than 25, the item is discounted and will not be put forward for designation.

We have found that scoring is best done as a group activity. There are usually extreme values put forward through possible personal bias that are effectively diluted by the weight of the majority verdicts.

I think it would be fun to try and score a few objects "live" that we all know about that we must pretend have just come out of service and are available for disposal. We are the committee that have to decide the fate of these items. I propose that we try and score them as a group.

• Stephenson's Rocket
• The Mckintosh Belgian loco that recently got cut up for scrap.
• A 1950's Mark I Touring Second Open carriage that contains asbestos insulation
RAILWAY HERITAGE COMMITTEE ARTEFACTS SCORE SHEET

OBJECT ...

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>SCORE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) that they are unique, as made or built/the last remaining one of a group or class/extremely rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) that they are representative of a group or class that merits preservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) that they are illustrative of a type of activity that merits preservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) that they represent an important technical or operational aspect of the railway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) that they represent an important aspect of the social impact of the railways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) that they form part of an established series or part of an assemblage that is being collected by a recognised institution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g) that they represent an important stage in development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h) that they have been involved in some significant event, or have associations with an important person or organisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) that they are of local, regional, national or international importance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL SCORE

All should meet criterion i) and one or more of criteria a) to h). For each criterion, a point of 0, 1, 2, 6, or 10 is allocated – with 10 indicating that the item scores extremely highly on the criterion concerned. Items should not be considered further for designation unless either: - at least one score of ‘10’ has been allocated or: the total of the scores equals at least ‘20’.

I would be very surprised if this exercise does not confirm our gut feelings that Rocket is a priceless icon, the Belgian engine is a shade wobbly and the Mark I carriage is not worth saving.

The Railway Heritage Committee scheme described above would have remained as a really useful but limited assessment tool had it not been for a second and more recent initiative concerning railway carriages and wagons already in preservation, in which the scheme has also proved to be very valuable.

Ten years ago the president of the Heritage Railway Association, Dame Margaret Weston at a watershed conference called "Operating or Wrecking?" challenged the membership to get out into the field and come up with the answer to the question "What of significance still survives in railway vehicle preservation?"

The NRM, HRA, VCT and TT formed a group called the Railway Carriage Register Group, secured funding from the Carnegie Trust and set up a nationwide survey with a team of approximately 15 volunteer assessors who sought out every vehicle and assessed its condition and significance against agreed descriptors.

To date some 3000 vehicles (85% of the total), have been visited and surveyed. The data has been placed on a Microsoft Access Data-base which is available as a fully interactive and searchable CD Rom which will be available for demonstration at the end of this talk. The data gathering exercise has been hugely successful and is immensely valuable as a learning resource.

It is sometimes tempting to believe that the database becomes an end in itself. This however is not the case and we sometimes have to pinch ourselves to remind us that the creation of this huge body of work has not saved a single valuable vehicle from the ravages of time and weather. What REALLY matters is what we do with the gathered information.

It fell to me to draw together the conclusions from this work that would seek to inform possible grant giving bodies like the Heritage Lottery Fund in the UK, about which of the extant vehicles in the country should receive priority funding.

I started to perform this operation by asking all the coach examiners to nominate and put into order of preference their to twenty choice of vehicles. It soon became clear that this system was deeply flawed and brought out the biggest prejudices in us all!

It resulted in outraged pleas for vehicles which had been missed from the aggregated top twenty choices. There was also an uneasy debate about my attempt to exclude all vehicles that were not "at risk" but yet were clearly deserving of funding. The logical argument to my intention to only consider "at risk" vehicles, was for responsible owners who had vehicles under cover to put them outside to gain eligibility! Clearly this was nonsense!

At this stage we hit on the plan to use the scoring system previously discussed to evaluate individual carriages against the criteria provided.

That way the various cases can be individually assessed on their merit and those that have intimate knowledge of their particular favourite vehicle can make their own case for others to score later.

This is the stage we have now reached and we believe this will provide the grant giving bodies a good sound steer from practitioners on the ground and it will at last answer that question about what of significance is out there in the world of railway preservation.

There is no reason why this scheme should be confined to Railway Vehicles of course.

In presenting this paper I should like to thank the following:

- Michael and Jackie Cope of Vintage Carriages Trust for their unstinting support and tireless work in creating the database and coordinating the whole project.
- John Robinson of Transport Trust for starting the ball rolling with the survey of railway wagons ten years ago.
- All the volunteer surveyors who have trudged the length and breadth of the country looking at carriages and wagons in muddy fields.
- The Carnegie Trust for providing the grant which has enabled the whole project to get off the ground by providing the necessary IT, and has paid out of pocket and traveling expenses for the surveyors.
- The HRA for providing the umbrella organisation to take the project forward to apply to other than just Railway Carriages and inviting me to present this paper.
- The Artefacts sub-committee of the Railway Heritage Committee for allowing us to plagiarise their scoring system to such good effect.
- The National Railway Museum for giving me the opportunity to become involved in this valuable work.

David T. Morgan
President FEDECRAIL

Preamble

The VENICE CHARTER was created in 1964 as a statement of principles for the conservation and restoration of monuments and sites. It opens with the preamble:

"Imbued with a message from the past, the historic monuments of generations of people remain to the present day as living witnesses of their age-old traditions. People are becoming more and more conscious of the unity of human values and regard ancient monuments as a common heritage. The common responsibility to safeguard them for future generations is recognized. It is our duty to hand them on in the full richness of their authenticity.

It is essential that the principles guiding the preservation and restoration of ancient buildings should be agreed and be laid down on an international basis, with each country being responsible for applying the plan within the framework of its own culture and traditions.

By defining these basic principles for the first time, the ATHENS CHARTER of 1931 contributed towards the development of an extensive international movement which has assumed concrete form in national documents, in the work of ICOM and UNESCO and in the establishment by the latter of the International Centre for the Study of the Preservation and the Restoration of Cultural Property”

Both Charters focus on monuments and built heritage. Transport heritage is not covered.

DEFINITIONS

ARTICLE 1. The concept of operating heritage railways embraces all forms of traditional railway equipment. It was a significant development in the history civilisation and its preservation helps to transfer and preserve traditional skills. Both the artefacts and methods of operation have acquired cultural significance with the passing of time.

ARTICLE 2. The preservation, restoration and operation of traditional railway equipment must have recourse to all the sciences, techniques and facilities, that can contribute to the study and safeguarding of the railway heritage.

AIM

ARTICLE 3. The intention in preserving and restoring traditional trains in operation is to safeguard them whether as “works of art”, as historical evidence or for perpetuating traditional skills.

PRESEVATION

ARTICLE 4. It is essential for the continued survival of traditional railways, locomotives, rolling stock and signalling in operation that they be maintained on a permanent basis.
ARTICLE 5. Making use of traditional trains for some socially useful purpose always facilitates their preservation. Such use is therefore desirable but it must not significantly change their exterior appearance. Modifications demanded by a change of function should be kept within these limits.

ARTICLE 6. Traditional railways are inseparable from their history and the local communities they served.

RESTORATION

ARTICLE 7. The process of restoration is a highly specialised operation. Its aim is to preserve and reveal the aesthetic, functional, and historic value of traditional trains and equipment and is based on respect for original material and authentic documents. The restoration in any case must be preceded and accompanied by a historical study of the equipment.

ARTICLE 8. The restoration of traditional trains and equipment will best be accomplished by means of traditional materials and techniques. Where traditional materials or techniques prove inadequate, the conservation of traditional trains in operation can be achieved by the use of modern materials for conservation, the efficacy of which has been shown by scientific data and proved by experience.

ARTICLE 9. The restoration of a traditional trains and equipment does not require that it shall be restored to the original year of construction. Some trains acquire their historical value later in their working life. Restoration to any period should be executed only after thorough consideration of historical records and available technical documentation covering the chosen period.

ARTICLE 10. Obligatory safety equipment must integrate harmoniously with the whole machine, but at the same time must be distinguishable from the original so that restoration does not falsify the artistic or historic evidence.

ARTICLE 11. Additions cannot be allowed except in so far as they do not detract from the interesting parts of the trains or equipment, its traditional setting and the balance of its composition. Furthermore, any modern modifications should be reversible and any original parts should be retained and secured with a view to its possible reunion with the other original parts in the future.

ARTICLE 12. In all works of restoration there should always be precise documentation in the form of analytical and critical reports, illustrated with drawings and/or photographs and other appropriate media. Every stage of the work of dismantling, treatment, reassembly and addition of new parts, as well as technical and structural features identified during the course of the work, should be included.